Performance of nonlinear speech enhancement using phase space reconstruction

نویسندگان

  • Michael T. Johnson
  • Andrew C. Lindgren
  • Richard J. Povinelli
  • Xiaolong Yuan
چکیده

This paper presents the implementation of two nonlinear noise reduction methods applied to speech enhancement. The methods are based on embedding the noisy signal in a high-dimensional reconstructed phase space and applying singular value decomposition to project the signal into a lower dimension. The advantages of these nonlinear methods include that they do not require explicit models of noise spectra and do not have the typical “musical tone” side effects associated with traditional linear speech enhancement methods. The proposed nonlinear methods are compared with traditional speech enhancement techniques, including spectral subtraction, Wiener filtering, and Ephraim-Malah filtering, on example speech utterances with additive white noise for a variety of SNR levels. The results show that the local nonlinear noise reduction method outperforms Wiener filtering and spectral subtraction but not Ephraim-Malah filtering, as had been suggested by previous studies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Utilizing Kernel Adaptive Filters for Speech Enhancement within the ALE Framework

Performance of the linear models, widely used within the framework of adaptive line enhancement (ALE), deteriorates dramatically in the presence of non-Gaussian noises. On the other hand, adaptive implementation of nonlinear models, e.g. the Volterra filters, suffers from the severe problems of large number of parameters and slow convergence. Nonetheless, kernel methods are emerging solutions t...

متن کامل

بهبود عملکرد سیستم بازشناسی گفتار پیوسته بوسیله ویژگی‌های استخراج شده از مانیفولدهای گفتاری در فضای بازسازی شده فاز

The design for new feature extraction methods out of the speech signal and combination of their obtained information is one of the most effective approaches to improve the performance of automatic speech recognition (ASR) system. Recent researches have been shown that the speech signal contains nonlinear and chaotic properties, but the effects of these properties are not used in the continuous ...

متن کامل

A New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain

Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...

متن کامل

Noise Estimation in Single Channel Speech Enhancement Using FFT

Conventional speech enhancement methods typically utilize the noisy phase spectrum for signal reconstruction. This letter presents a novel method to estimate the clean speech phase spectrum, given the noisy speech observation in single-channel speech enhancement. The proposed method relies on the phase decomposition of the instantaneous noisy phase spectrum followed by temporal smoothing in ord...

متن کامل

Enhancement of Chinese speech based on nonlinear dynamics

Based on recently observed nonlinear dynamic features of human speech, the local projection (LP) method, originally developed for noisy chaotic time series, is generalized and adapted to the enhancement of Chinese speech. The analysis of minimum embedding dimensions estimated by the false nearest neighbor algorithm shows that all the basic phonemes and syllables in Chinese can be faithfully emb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003